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Abstract 
Genetic Algorithms have been widely applied to various kinds of optimisation 

problems. In this work, a Genetic Algorithm is designed to solve the three 

classic numerical optimisation problems – Rastrigin, Schwefel and Griewank. An 

experiment to observe the comparative performances of five different 

crossover functions was conducted. Also, the possible effect of aging out some 

of the old individuals from the population was hinted at. A parameter set 

expected to give the optimal performance and a discussion on the design 

considerations are presented below. 

 

1.0 Background Introduction 
The field of evolutionary computation is a rapidly growing one. Mitchell 

[Mit96], in discussing the use of evolution as an inspiration for solving 

computational problems, observed that, 

..the mechanism of evolution seem well suited for some of the most pressing 
computational problems in many fields. Many computational problems 
require searching through a huge number of possibilities for solutions. 

Genetic Algorithm is one of the most popular techniques used in evolutionary 

computation [Gol89]. However, designing and tuning a Genetic Algorithm to 

solve such problems have always involved trade-offs. This is often because the 

nature of the problem and desired quality of the result are often weighed 
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alongside the available resources for solving it. An overview of Genetic 

Algorithms is presented in the next section as well as the general discussion on 

the problem and approaches taken to tackle it.  

Genetic Algorithms (GAs) 
GAs are population based search algorithms, originally developed by John 

Holland (1975), based on the principles of the Darwinian Theory of Evolution and 

Natural Selection [Whi05]. They are currently among the most widely used 

heuristic approaches to multiobjective optimisation. A GA is said to be 

population based because it works with a population of individual solutions. 

These individual solutions are data structures encoded in chromosome-like forms 

i.e. a concatenation of genes. The gene values could be bit-strings, real values or 

symbols. 

The first step in the canonical algorithm is to randomly generate individuals 

that form the initial population at generation g:=0. It then loops through the 

processes of selection of parents for the intermediated population (or mating 

pool); crossover and mutation that produces new offspring and finally, replacement of 

the parent population with the offspring population. This is done over a 

specified number of generations and stops when a certain target solution quality 

is reached or when any other termination criterion is met. Issues concerning 

the choice of the main operations of selection, crossover, mutation and 

replacement will be discussed in section 3: Methodology. Below is a sample 

structure of a typical GA: 

1.  Generate (P(0)) 
2.  t := 0 
3. while not Termination_Criterion(P(t)) 
4.  do 
5. Evaluate(P(t)) 
6. P’(t) := Selection(P(t)) 
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7. P’(t) := Recombination(P’(t)) 
8. P’(t) := Mutation(P’(t)) 
9. P(t+1) := Replace(P(t), P’(t)) 
10. t := t+1 
11. return Best_Solution_Found 

 
2.0  Task Description 

The summary of the task in this assignment is to design and tune a single 

robust algorithm that can solve the three classic numerical optimisation test 

problems – Rastrigin, Schwefel and Griewank – up to given targets. This 

algorithm should be able to solve all the three problems using the same set of 

initial configuration parameters. Java is expected to be used for the 

development. The number of evaluations of the objective functions required 

to solve the three numeric functions should not exceed 30,000 and the 

performance should be improved as much as possible. Any additional feature 

implemented or experimented on may as well count for the overall assessment. 

Overview of the functions (Rastrigin, Schwefel and Griewank) 

The above given functions are classics that are often used as global numerical 

optimisation test problems. A brief overview of each of the functions in the 

context of our problem is presented below. 

Rastrigin  

o Function definition: 𝒇 𝒙 = 𝑎𝑛 +  [𝑥𝑖
2 −  𝑎 cos(𝑏𝑥𝑖)]𝑛

𝑖=1  
o Number of variables,  n:  n = 20 
o Search domain for xi:  −5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n. 
o Value of a:   10 

o Value of b:   2 
o Number of local minima:  many 
o Actual global minima: x* =  (0, …, 0), f(x*) = 0. 
o Set target:   < 0.9 
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Fig 2: Schwefel Function Graph for n=2 

Fig 3: Griewank Function Graph for n=2 
 

 

 

 

 

 

Schwefel  

o Function definition: 𝑓 𝑥 =   − 𝑥𝑖 sin(  𝑥𝑖 )
𝑛
𝑖=1  

o Number of variables,  n:  n = 10 
o Search domain for xi:  −500 ≤ xi ≤ 500, i = 1, 2, . . . , n. 
o Number of local minima:  many 
o Actual global minima: x* =  (1, …, 1), f(x*) = 0. 
o Set target value:  < − 4187.5  

 

 

 

 

 

Griewank     

o Function definition: 𝑓 𝑥 =  1 +  
 𝑥𝑖

2𝑛
𝑖=1

4000
−  cos  

𝑥𝑖

 𝑖
 𝑛

𝑖=1  

o Number of variables,  n:  n = 10 
o Search domain for xi:  −600 ≤ xi ≤ 600, i = 1, 2, . . . , n. 
o Number of local minima:  many 
o Actual global minima: x* =  (0, …, 0), f(x*) = 0. 
o Set target value:  <  0.1  

 

 

  

Fig 1: Rastrigin Function Graph for n=2 

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 
ISSN 2229-5518 

1374

IJSER © 2015 
http://www.ijser.org 

IJSER



3.0  Methodology 

This experiment was conducted with an already developed algorithm for the 

test problems. However, it was modified to introduce additional crossover 

operators and the age operator. The major tasks carried out in this work were 

tuning the algorithm to obtain a set of configuration parameters that will 

achieve the desired aim i.e. solving each of the problems to target and within 

the total maximum number of evaluations and then with the solution 

parameter set, the tests on the crossover functions and the age function were 

conducted. The structure of the algorithm used including its operators will be 

briefly presented and then followed by the experiment procedure, results and 

discussions. 

The Algorithm 

The GA performance is often determined by the choice of operators and 

parameters made during the design. The following defines the main aspects of 

the design of the GA used in this work. 

Representation 

Although most canonical2 GAs use binary encoding of chromosomes, other 

types of coding are possible. Real valued coding was used in this work. A good 

justification for that may be drawn from the works of [Wri91] and [ScE93]. 

Selection 

This algorithm used tournament selection to pick the parents that will be 

recombined from the population specifically for the BLX-0.5, Linear and 

Uniform crossovers. Research has confirmed that this selection scheme can 

effectively improve performance [GoD91]. However, for the two other 

crossovers operators – Multi-Parent (1) and Multi-Parent (2) – normal random 

                                                 
2
 The original structure of GA as proposed by Holland is often referred to as the canonical GA 

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 
ISSN 2229-5518 

1375

IJSER © 2015 
http://www.ijser.org 

IJSER



 

selection was adopted because this approach seemed more explorative and yet 

produced good results. 

Crossover operators 

There were five different crossover operators featured in this work. The first 

(BLX-0.5 and Linear) two are typically used with real values because they also 

can introduce new information into the search space by producing new allele 

values. The others (multi-parents and uniform) can recombine based on the 

already existing information. They do not introduce any new traits into the 

population and so a more prominent with binary coding. All the five operators 

are discussed under Testing the crossover operators in section 3. 

Mutation 

Probabilistic creep mutation described by [Wri91] which is less disruptive than 

replacing a gene completely with a new random real value, was used. A 

perturbation is likely to increase or decrease the gene value but the maximum 

creep size was varied to obtain results during the tuning. 

 

Replacement 

The steady state replacement scheme of the extinction of the worst was used. Only 

one offspring is produced by the crossover and mutation and, if better, the 

new offspring replaces the worst individual in the population. 

The Experiment: Tuning the Algorithm 

The problem of selecting an optimum set of parameters for the GA is 

complex itself [Vin03]. The two main approaches to this are often building an 

adaptive GA or some kind of heuristic trial and error method. The latter was 

largely applied in this work. 
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Testing for Creep Size and Distribution (theta) 
A quick evaluation of the performance of the mutation rate on the three 

functions was made (fig 4.) and the result indicated that Schwefel did not work 

at all but for some occasional noise at some points. Rastrigin was also shown 

to be sensitive to the mutation rate. However, mRate of 0.1 was used to 

examine the effect of  maxCreep and mDist (Theta). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So for the three functions, the maxCreep and the theta were varied and the 

graph of the average number of evaluations that solved the problem with the 

maximum number of evaluation being 30, 000 was plotted. (ref. to Appendix I 

for the data and figs 5,6,7) 

 
Rastrigin gave good results for higher values of theta (8 – 15) and lower values 

of maxCreep (0.10 – 0.7). However, Schwefel seemed to be affected more by 

maxCreep than theta. Lower values of maxCreep generally produced bad results 

with occasional cases of exceptionally good performances (noise). Also, higher 

Mutation Rate vs Evaluations( <50000 are successful)
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values of maxCreep (0.7 and above) almost guaranteed above average 

performance and helps the algorithm to better explore the search space and 

not get trapped in a local optima. 

Griewank is somewhat different from the other two. Although, it gave 

comparatively good performance, the best results clustered around lower 

values of maxCreep and the mid values of theta. (see Appendix I) 

 
The experiment, as well as the graphs, shows that there are quite a lot more 

issues with the nature of the individual functions. The target for Griewank can 

easily be met but with a combination of the other two functions makes the 

problem a little more demanding.  
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Fig 5: Griewank: Max-Creep + Theta: mRate: 0.1; popSize: 15;  tSize: 2 
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However, tracing the data table Appendix I, the values identified were: 

o theta = 9 or 10 

o maxCreep = between 0.8 and 0.9 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6: Rastrigin: Max-Creep + Theta: mRate: 0.1; popSize: 15;  tSize: 2 
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Fig 7: Schwefel: Max-Creep + Theta: mRate: 0.1; popSize: 15;  tSize: 2 
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Fine-tuning the initial values (popSize, tSize and mRate) 

popSize 
With the parameters for theta and maxCreep as shown above, values for popSize 

were tested. For the results, Schewefel and Griewank showed relative stability 

across varying popSize values but Rastrigin was obviously more sensitive to 

varying population sizes (Fig 9). However, for their combined number of 

evaluations, relatively good performance was observed for popSize values 

between 5 and 25 (Fig 9). 

It is noteworthy though that in all these tests, the overInit remained constant i.e. 

100, but it is believed to have some effects on the starting average quality of 

the population. Also, considering that the experiment is being run to target, 

accurate measurement of the quality of the solution was not part of the work. 

tSize 
With a population size of 10, the overall performance of the three functions in 

terms the number of evaluations was best at tSize = 7 (see fig 10). Fig 11 shows 

their individual performances in terms of the number of evaluations. 

Considering the configuration set being used, the likely value for tSize could be 

anything between 6 and 8.  

 

 

 

 

 

 

 

 

Fig 8: Total Evaluation vs Population size: mRate: 0.1; tSize: 2 
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mRate 

The actual effect of the mutation rate was the last to be tested with the 

configuration parameter values derived from the above experiments. popSize, 

tSize, theta and maxCreep were kept at 10, 7, 10, 0.9 respectively. The combined 

performance of the three functions in terms of evaluations seemed best at 

points between 0.8 and 0.16. However, the least number of evaluations was 

best at 0.12 and 0.16.  

Also Schwefel and Griewank were tending toward reduced number of 

evaluations as the mutation rate increased but the performance of Rastrigin 

was not guaranteed (a shot at it actually showed worse performance). 

Generally, a mutation rate of 0.12 will be ideal considering the data collected. 

See Table 1 and Figs 12, 13. 

 

 
 

Fig 9: Evaluation vs Population size: mRate= 0.1; tSize= 2 
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Fig 10: Total Evaluation vs Tournament size: mRate: 0.1; tSize: 2, popSize = 10 

 

Fig 11: Evaluations vs tournament size: mRate: 0.1;  popSize = 10 

 

Fig 12: Total Evaluations vs Mutation Rate:  tSize: 7, popSize = 10 
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Table 1: mRate vs Evaluation 

mRate Rastrigin Schwefel Griewank 
Total 
Evals 

0.02 22387 20314 9024 51725 
0.04 17291 15112 5011 37414 
0.06 14534 10413 3467 28414 
0.08 12943 7648 2764 23355 
0.10 13623 8003 2125 23751 
0.12 12930 7443 1602 21975 
0.14 15142 6125 1468 22735 
0.16 13824 6186 1418 21428 
0.18 17388 6721 1611 25720 
0.20 17329 5399 1413 24141 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Testing the crossover operators 

The extended blend crossover – BLX-0.5 
This is one of the commonly used crossover techniques for real number 

coding and it was used in this algorithm for the initial tuning phase. Point and 

uniform crossovers often used with bit-string representations do not introduce 

new information into the search [Vin03]. For this operator, the new offspring, 

z, is defined from the parents x and y as: -  

Fig 13: Evaluations vs Mutation Rate:  tSize: 7, popSize = 10 
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𝒛 = 𝒙 +  𝟐𝑹 − 𝟎. 𝟓 ∗  𝒚 − 𝒙  where R = random real number 

A sample code is shown below 

 

 

 

 

 

Linear crossover 
Another operator used with real number coding – Linear crossover – was also 

introduced. Although this promised good results, it was not efficient because it 

requires additional evaluations. It works by producing three offspring from 

two parents and selection the best among them and this causes extra two 

evaluations for any one replacement. For instance, the three offspring z1, z2, 

z3 produced by the parents x and y are defined by 

𝒛𝟏 =  
𝒙

𝟐
 +   

𝒚

𝟐
 ; 𝒛𝟐 = 𝟑  

𝒙

𝟐
 −  

𝒚

𝟐
 ; 𝒛𝟑 = 𝟑  

𝒚

𝟐
 −  

𝒙

𝟐
    

A sample code is as shown below 

 

 

 

 

 

 

 

Multi parent crossover (1) 
In the first version of the multi – parents crossover used, the number of 

parents used varies and so does the length of the genes each contributes. 

Parents are selected at random for as long as there is an ‘unfilled’ gene position 

... 

if (xoverType == 1){ 

/* blx-0.5 crossover*/ 

for (int i = 0; i < nPars; i++) 

    offspr.gene[i]=parent1.gene[i]+(2*rand.nextDouble()-0.5)*(parent2.gene[i]- parent1.gene[i]); 

} 

... 

 

... 

else if(xoverType == 2){ 

/* linear crossover*/ 

for(int i = 0; i < nPars; i++){ 

offspr. gene [i] = parent1. gene [i]/2 + parent2. gene [i]/2; 

off2. gene [i] = 3*parent1. gene [i]/2 - parent2. gene [i]/2; 

off3. gene [i] = 3*parent2. gene [i]/2 - parent1. gene [i]/2; 

} 

// select one of the three: 2 extra evaluations 

if (offspring.evaluate() > off2.evaluate()) offspring = off2; 

if (offspring.eval>off3.evaluate()) offspring = off3; 

} // end linear crossover 

... 
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still remaining on the new offspring. Crossover points are determined by 

adding up the lengths of genes contributed by different parents. The sample 

code below illustrates the concept. 

 

 

 

 

 

 

 

Multi parent crossover (2)  
This is multi-parent complete. In this version of the multi–parent crossover, the 

number of parents used is more determined. In fact, as many parents as the 

gene length are used such that each gene value is contributed by a newly 

selected parent. Selection is also basically random not biased to better parents. 

See the code segment. 

 

 

 

 

 

 

Uniform crossover  

In uniform crossover, two parents were used and they were picked with 

tournament selection. A mask Boolean pattern is then randomly generated to 

else if(xoverType == 3){ 

   // multi parent crossover(1): Some parents are used. 

   int selLength; 

   for(int x_point=0;x_point < nPars;){   /* start from the 1st gene*/ 

     // make new offsprings with some parents <= gene length 

     parent1 = population[rand.nextInt(popSize)]; //get a parent 

     selLength = rand.nextInt(nPars-1);      // get a point on the parent 

     if (x_point + selLength > nPars-1) 

 selLength = (nPars) - x_point ; 

     System.arraycopy(parent1. gene,x_point, offspring. gene, x_point,selLength); 

     x_point += selLength;       //get the new crossover point 

   } //for 

} 

... 

else if(xoverType == 4){ 

   // multi parent crossover(2): No of parents = gene length. 

   int selGene; 

   for(int x_point=0;x_point < nPars;){   /* start from the 1st gene*/ 

     // make new offsprings with some parents = gene length 

     parent = population[rand.nextInt(popSize)]; //get a parent 

     selGene = x_point;   // get the gene this parent donates 

     System.arraycopy(parent.gene, x_point, offspring. gene, x_point,selLength); 

     x_point += selGene;       //get the new crossover point 

   } //for 

} 

... 
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Page 16 of 24 

aid in deciding which parent donates which gene in producing a single 3 

offspring. An illustration and a sample code segment of two parents, x and y, 

producing an offspring, z, are given below. 

 

 

 

 

 

The analysis of the data from the comparison is as shown below. 

Table 2 Crossover vs Evaluations 
Crossover Rastrigin Schwefel Griewank Total 
BLX-0.5      13215 6927 1621 21763 
Linear       21543 14610 3991 40144 
M-Parents(1) 14567 7069 2003 23639 
M-Parents(2) 12917 5707 1652 20276 
Uniform      14052 5874 1746 21672 

 

 

 

 

 

 

 

 

 

 

                                                 
3
 Actually, two offspring can be generated but this work considered only one. 

... 

else if(xoverType == 5){ 

   //for uniform cross over 

   boolean [] mask = new boolean [nPars]; 

   for (int i=0; i<nPars; i++) mask[i] = rand.nextBoolean(); //generate the Boolean values 

   for(int x_point=0;x_point<nPars;x_point++){ 

      //decide which parent contributes the gene for the new offspring 

     if (mask[x_point]) 

System.arraycopy(parent1.gene,x_point, offspring.gene,x_point,1); 

     else 

 System.arraycopy(parent2.gene,x_point, offspring.gene,x_point,1); 

    }//end of for 

}//uniform crossover 

... 

0
5000

1000
0

1500
0

2000
0

2500
0

3000
0

3500
0

4000
0

4500
0

T
o

ta
l N

o
 o

f 
E

v
a

lu
a

ti
o

n
s

BLX-0.5     Linear      M-Parents(1) M-Parents(2) Uniform     

Crossover function

Comparison of Different Crossover Functions

Griewank

Schwefel

Rastrigin

Fig 14: 

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 
ISSN 2229-5518 

1386

IJSER © 2015 
http://www.ijser.org 

IJSER



Expectedly, linear crossover, which has an additional two evaluations, was the 

worst in performance. However, the others were within the same range of 

performance with the BLX-0.5 but it is interesting to note that without any 

bias in the selection of parents (e.g tournament), the multi-parent functions 

comparatively well. 

 

The age function 

One other function that seemed interesting to look at was the age function. 

The whole concept is about elimination individuals that have lasted in the 

population beyond a certain age limit (number of evaluations). The 

expectation is that replacing them with new offspring might improve the 

explorative aspect of the search. However, this experiment did not cover this 

in detail and therefore cannot give very sound report on its effect. The data 

(below) generated did not reveal much. 

 

 

 

 

 

 

Table 3 Age Limit vs Evaluations 
Age 
Limit Rastrigin Schwefel Griewank Total 
5000 13501 7266 2119 22886 
10000 11803 7597 2102 21502 
15000 13415 7419 1939 22773 
20000 13152 6437 2208 21797 

 

... 

public void age(Individual [] individuals, int maxAge){ 

   for (int i = 0; i < popSize; i++) {// go through the entire population 

  individuals[i].age++;      // increment age by 1 

 if (individuals[i].age > maxAge){   // check if the age limit is exceeded 

  Individual parent; 

  for(int x_point=0;x_point<nPars;x_point++){ // create a new individual with  

  parent = population[rand.nextInt(popSize)];// multiple parents and make its  

//age = 0 

    System.arraycopy(parent.gene,x_point, individuals[i].gene, x_point,1); 

  } 

    individuals[i].age = 0; 

 }//if 

   }//for 

}//age... 
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4.0  Conclusion 
Generally, Rastrigin required far more time than the other two to reach the 

target. In summary, the optimum set of configuration parameters that was 

derived from this experiment are: 

Population size:  10 
Tournament size:  7 
Mutation rate:  0.12 
Max Creep:   0.9 
Max Distribution (Theta) 10 
Crossover:   BLX-0.5, the “Multi-Parent”s, Uniform 
 

The above set of configuration parameter values consistently guarantees a total 

number of evaluations less than 23,000 in meeting the required targets on all 

the three functions. The linear crossover naturally would not do well 

compared to the others if the key assessment factor is number of evaluations. But 

others performed well enough. 

However, one of the weaknesses of this experiment is not considering the 

effect of other parameters on the performance of the crossover operator. Also 

BLX-0.5 remains the best choice for its ability to explore the search space 

better by producing new allele values.  This goes also in considering the effect 

of the age function. Although, the age function did not show any interesting 
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performance pattern, it may be worth probing further into it. Future works on 

this need to explore those areas. 
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6.0 Appendix I: showing data collected on Theta, mCreep and No of Evaluations for three functions 

RASTRIGIN 
PSize 
= 15 

 TournamSize 
= 2 

No of Trials 
=50 

Mutation Rate = 
00.1000       

Theta 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 
mCreep| Average 

0.1 15207 15884 17102 17928 16122 15386 15538 15923 16276 16670 16558 17287 18514 18565 18398 16757 
0.2 14876 14429 15396 14964 14108 13698 13860 12576 12190 12958 13285 13923 13838 12759 13910 13785 
0.3 17904 16037 15619 16277 15623 15935 14050 13295 14069 13834 13233 13289 13443 14105 13496 14681 
0.4 19260 17533 16616 17464 16653 15841 14652 14678 14310 13491 13849 14306 12608 13602 14926 15319 
0.5 20736 17671 17566 17844 17080 16187 16018 15180 14861 14021 13438 14129 14586 14386 14240 15863 
0.6 23002 20700 19311 18700 18264 18255 16157 15445 15379 14371 15340 14691 14808 15753 15245 17028 
0.7 24892 20497 18809 19039 18109 18273 17138 15548 15286 15505 16208 14475 15560 14592 14766 17246 
0.8 24517 21563 21043 19693 20004 18298 17160 16831 16200 15231 14762 15218 15001 15514 15393 17762 
0.9 24519 22025 19794 20989 19546 19031 19083 16399 15853 14606 15803 14843 15723 15946 16200 18024 

1 25563 24177 22378 20899 19187 18643 19028 16697 16515 16502 16400 15687 14839 15163 16160 18523 
1.1 26448 23787 21259 19788 19766 18940 19412 18674 16759 15753 14559 17427 17466 16544 15375 18797 

Average 21539 19482 18627 18508 17678 17135 16554 15568 15245 14813 14858 15025 15126 15175 15283  
Minimum 12190  Maximum 26448 Median 15946           
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GRIEWANK 

pSize 
= 

15 tSize 2 No of Trials 
=50 

Mutation Rate = 
00.1000 

Theta 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Average 
mCreep|                 

0.1 1782 1643 1361 1298 1347 1548 1584 1657 1912 1768 2152 2094 2505 2551 2935 1759 
0.2 2669 1987 1775 1668 1723 1430 1503 1575 1901 1968 1918 2118 2249 2337 3070 1868 
0.3 3794 2723 2149 1853 1748 1644 1845 1732 2135 2197 1987 2514 2240 2471 2891 2120 
0.4 5421 3258 2735 2241 1641 1813 2017 1885 2089 1618 2411 2280 2370 2646 2384 2301 
0.5 5334 3811 3094 2098 1932 1691 1949 2325 2172 1972 2345 2024 2241 2435 3381 2425 
0.6 7596 4493 2774 2519 2020 1655 1983 1774 1631 2029 2091 2640 2310 2796 2938 2578 
0.7 8360 4508 3161 2156 1959 1873 1931 1931 1769 2125 2345 2345 2231 2910 2965 2661 
0.8 10503 4960 4028 2646 2148 1679 2010 1806 2377 1759 2367 2436 2434 2814 2581 2909 
0.9 9769 5842 3951 2611 2096 2431 1845 2156 1914 2096 2253 2375 2599 3077 2983 3000 

1 11607 7057 3832 3223 2037 2067 2094 1876 2064 2336 2107 2265 2524 2902 3305 3206 
1.1 11037 6811 4439 2593 2531 1893 2059 1604 2166 2135 2202 2830 2400 2538 2597 3115 

Average 7079 4281 3027 2264 1926 1793 1893 1847 2012 2000 2198 2356 2373 2680 2912  
Minimum 1298  Maximum 11607 Median 2240           
             
             
Note: In red italics are the values above the median of all the values while bolded blue are values below the 
median 
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SCHWEFEL 

pSize 
= 15  tSize = 2 

No of Trials 
=50 

Mutation Rate = 
00.1000       

Theta 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
mCreep|                 

0.1 30000 30000 30000 30000 30000 30000 30000 30000 30000 30000 30000 30000 30000 30000 30000 30000 
0.2 30000 30000 30000 30000 30000 30000 30000 30000 30000 30000 30000 3056 30000 30000 30000 28204 
0.3 30000 30000 2057 30000 30000 30000 30000 30000 1219 30000 30000 30000 30000 30000 30000 26218 
0.4 30000 30000 2661 1719 30000 30000 1505 30000 30000 30000 30000 2247 30000 30000 30000 22542 
0.5 30000 30000 30000 30000 30000 30000 903 30000 30000 30000 30000 1199 30000 30000 30000 26140 
0.6 30000 3874 30000 30000 30000 30000 30000 1728 30000 30000 1492 30000 30000 30000 30000 24473 
0.7 14519 19388 18261 17229 18177 18158 21487 19883 13796 15659 22363 18775 17129 19992 18012 18189 
0.8 8179 6029 6461 5692 6523 7136 6765 7578 7508 7647 8829 9423 9368 10504 12456 8007 
0.9 8234 6161 5666 5289 5759 6659 7395 6625 7647 9151 8093 8357 9536 10756 9721 7670 

1 9436 6171 5345 5855 5860 6450 8251 7578 7239 8056 8754 8086 10469 9993 9635 7812 
1.1 9560 6754 5666 5326 5788 6008 6235 7066 7405 8965 7969 8532 9159 11574 10631 7776 

Average 20903 18034 15102 17374 20192 20401 15686 18223 17710 20862 18864 13607 21424 22074 21860  
Minimum 903  Maximum 30000 Median 25200.5           
                 
Note: In red italics are the values above the median of all the values while bolded blue are values 
below the median        
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7.0 Appendix II: A version of the GA code used for the experiment 
 Evolution.Java runs the different crossover function for any of the functions selected with the pre-
predefined parameters. Evolution_Age.Java is the same only that it runs the with different age limits. The 
MersenneTwisterFast.Java is the random number generator class and Individual.Java defines the structure of each 
individual in the population. 
 
There are also two output file that are generated after each run: result.txt which has the details of the run and 
data.txt which keeps the summary. 
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